Artificial Intelligence

Knowledge representation in AI

Symbolic Logic

- Simbolic logic representation
- Formal system
- Propositional logic
- Predicate logic
- Theorem proving

1. Knowledge representation

- Why Symbolic logic
- Power of representation
- Formal language: syntax, semantics
- Conceptualization + representation in a language
- Inference rules

2. Formal systems

- O formal system is a quadruple $\mathrm{S}=\langle\mathrm{A}, F, A, \mathfrak{R}\rangle$
- A rule of inference $\mathrm{R} \in \mathfrak{R}$ of arity n is an association:

$$
\mathrm{R} \subseteq F^{\mathrm{n}} \times F, \overline{\mathrm{y}}=\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\rangle \xrightarrow{\mathrm{R}} \mathrm{x}, \mathrm{x}, \mathrm{y}_{\mathrm{i}} \in F, \quad \forall \mathrm{i}=1, \mathrm{n}
$$

- Immediate consequence
- Be the set of premises $\Gamma=\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \quad \mathrm{E}_{0}=\Gamma \cup A$

$$
\left.\mathrm{E}_{1}=\mathrm{E}_{0} \underset{\mathrm{n} \geq 1}{\mathrm{U}\left\{\mathrm{x} \mid \exists \overline{\mathrm{y}} \in \mathrm{E}_{0}^{\mathrm{n}}, \overline{\mathrm{y}} \mathfrak{R} \mathrm{x}\right\} \quad \mathrm{E}_{2}=\mathrm{E}_{1} \cup\{\mathrm{n} \geq 1} \mid \exists \overline{\mathrm{y}} \in \mathrm{E}_{1}^{\mathrm{n}}, \overline{\mathrm{y}} \mathfrak{R} \mathrm{x}\right\}
$$

- An element $\mathrm{E}_{\mathrm{i}}(\mathrm{i} \geq 0)$
is an immediate consequence of a set of premises Γ

Formal systems - cont

- If $\mathrm{E}_{0}=A(\Gamma=\phi)$ then the elements of E_{i} are called theorems
- Be $x \in E_{i}$ a theorem; it can be obtained by successive applications of i.r on the formulas in E_{i}
- Sequence of rules - demonstration $\cdot \vdash_{\mathrm{S}} \mathrm{x} \vdash_{R^{\mathrm{X}}}$
- If $\mathrm{E}_{0}=\Gamma \cup A \quad$ then $\quad \mathrm{x} \in \mathrm{E}_{\mathrm{i}}$ can be deduced from Γ

$$
\Gamma \vdash_{\mathrm{s}} \mathrm{x}
$$

3. Propositional logic

- Formal language
- 3.1 Syntax
- Alphabet
- A well-formed formula (wff) in propositional logic is:
(1) An atom is a wff
(2) If P is a wff, then $\sim \mathrm{P}$ is a wff.
(3) If P and Q are wffs then $\mathrm{P} \wedge \mathrm{Q}, \mathrm{P} \vee \mathrm{Q}, \mathrm{P} \rightarrow \mathrm{Q}$ si $\mathrm{P} \leftrightarrow \mathrm{Q}$ are wffs.
(4) The set of all wffs can be generated by repeatedly applying rules (1)..(3).

3.2 Semantics

- Interpretation
- Evaluation function of a formula
- Properties of wffs
- Valid / tautulogy
- Satisfiable
- Contradiction
- Equivalent formulas

Semantics - cont

- A formula F is a logical consequence of a formula P
- A formula F is a logical consequence of a set of formulas $\mathrm{P}_{1}, \ldots \mathrm{P}_{\mathrm{n}}$
- Notation of logical consequence $\mathrm{P}_{1}, \ldots \mathrm{P}_{\mathrm{n}} \Rightarrow \mathrm{F}$.
- Theorem.Formula F is a logical consequence of a set of formulas $P_{1}, \ldots P_{n}$ if the formula $P_{1}, \ldots P_{n} \rightarrow F$ is valid.
- Teorema. Formula F is a logical consequence of a set of formulas $P_{1}, \ldots P_{n}$ if the formula $P_{1} \wedge \ldots \wedge P_{n}$ $\wedge \sim \mathrm{F}$ is a contradiction.

Equivalence rules

Idempotenta	$\mathrm{P} \vee \mathrm{P} \equiv \mathrm{P}$	$\mathrm{P} \wedge \mathrm{P} \equiv \mathrm{P}$	
Asociativitate	$(\mathrm{P} \vee \mathrm{Q}) \vee \mathrm{R} \equiv \mathrm{P} \vee(\mathrm{Q} \vee \mathrm{R})$	$(\mathrm{P} \wedge \mathrm{Q}) \wedge \mathrm{R} \equiv \mathrm{P} \wedge(\mathrm{Q} \wedge \mathrm{R})$	
Comutativitate	$\mathrm{P} \vee \mathrm{Q} \equiv \mathrm{Q} \vee \mathrm{P}$	$\mathrm{P} \wedge \mathrm{Q} \equiv \mathrm{Q} \wedge \mathrm{P}$	$\mathrm{P} \leftrightarrow \mathrm{Q} \equiv \mathrm{Q} \leftrightarrow \mathrm{P}$
Distributivitate	$\mathrm{P} \wedge(\mathrm{Q} \vee \mathrm{R}) \equiv(\mathrm{P} \wedge \mathrm{Q}) \vee(\mathrm{P} \wedge \mathrm{R})$	$\mathrm{P} \vee(\mathrm{Q} \wedge \mathrm{R}) \equiv(\mathrm{P} \vee \mathrm{Q}) \wedge(\mathrm{P} \vee \mathrm{R})$	
De Morgan	$\sim(\mathrm{P} \vee \mathrm{Q}) \equiv \sim \mathrm{P} \wedge \sim \mathrm{Q}$	$\sim(\mathrm{P} \wedge \mathrm{Q}) \equiv \sim \mathrm{P} \vee \sim \mathrm{Q}$	
Eliminarea implicatiei	$\mathrm{P} \rightarrow \mathrm{Q} \equiv \sim \mathrm{P} \vee \mathrm{Q}$		
Eliminarea implicatiei duble	$\mathrm{P} \leftrightarrow \mathrm{Q} \equiv(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{P})$		

3.3 Obtaining new knowledge

- Conceptualization
- Reprezentation in a formal language
- Model theory

$$
\mathrm{KB} \|-\mathrm{x} \mathrm{M}
$$

- Proof theory

KB $\vdash_{\text {s }} \times \mathrm{M}$

- Monotonic logics
- Non-monotonic logics

3.4 Inference rules

- Modus Ponens $\quad \stackrel{\stackrel{\mathrm{P}}{\mathrm{P}} \mathrm{Q}}{\mathrm{Q}}$
- Substitution
- Chain rule

$$
\begin{aligned}
& \mathrm{P} \rightarrow \mathrm{Q} \\
& \mathrm{Q} \rightarrow \mathrm{R} \\
& \mathrm{P} \rightarrow \mathrm{R}
\end{aligned}
$$

- AND introduction

$$
\begin{gathered}
\mathrm{P} \\
\frac{\mathrm{Q}}{\mathrm{P} \wedge \mathrm{Q}}
\end{gathered}
$$

- Transposition

$$
\frac{\mathrm{P} \rightarrow \mathrm{Q}}{\sim \mathrm{Q} \rightarrow \sim \mathrm{P}}
$$

Example

- Mihai has money
- The car is white
- The car is nice
- If the car is white or the car is nice and Mihai has money then Mihai goes to the mountain
- B
- A
- F
- $(A \vee F) \wedge B \rightarrow C$

4. First order predicate logic

4.1 Syntax

Be D a domain of values. A term is defined as:

- (1) A constant is a term with a fixed value belonging to D.
- (2) A variable is a term which may take values in D.
- (3) If f is a function of n arguments and $t_{l}, . . t_{n}$ are terms then $f\left(t_{l}, . . t_{n}\right)$ is a term.
- (4) All terms are generated by the application of rules (1)...(3).

Syntax PL - cont

- Predicates of arity n
- Atom or atomic formula.
- Literal

A well formed formula (wff) in first order predicate logic is defined as:
(1) A atom is an wff
(2) If $P[x]$ is a wff then $\sim P[x]$ is an wff.
(3) If $P[x]$ and $Q[x]$ are wffs then $P[x] \wedge Q[x]$, $\mathrm{P}[\mathrm{x}] \vee \mathrm{Q}[\mathrm{x}], \mathrm{P} \rightarrow \mathrm{Q}$ and $\mathrm{P} \leftrightarrow \mathrm{Q}$ are wffs.
(4) If $\mathrm{P}[\mathrm{x}]$ is an wff then $\forall \mathrm{xP} \mathrm{P}[\mathrm{x}], \exists \mathrm{x} \mathrm{P}[\mathrm{x}]$ are wffs.
(5) The set of all wffs can be generated by repeatedly applying rules (1)..(4).

Syntax - schematically

CNF, DNF

- Conjunctive normal form (CNF)

$$
\begin{aligned}
& \mathrm{F}_{1} \wedge \ldots \wedge \mathrm{~F}_{\mathrm{n}}, \\
& \mathrm{~F}_{\mathrm{i}}, \mathrm{i}=1, \mathrm{n} \\
& \left(\mathrm{~L}_{\mathrm{i} 1} \vee \ldots \vee \mathrm{~L}_{\mathrm{im}}\right) .
\end{aligned}
$$

- Disjunctive normal form (DNF)

$$
\begin{aligned}
& \mathrm{F}_{1} \vee \ldots \vee \mathrm{~F}_{\mathrm{n}}, \\
& \mathrm{~F}_{\mathrm{i}}, \mathrm{i}=1, \mathrm{n} \\
& \left(\mathrm{~L}_{\mathrm{i} 1} \wedge \ldots \wedge \mathrm{~L}_{\mathrm{im}}\right)
\end{aligned}
$$

4.2 Semantics of PL

- The interpretation of a formula F in first order predicate logic consists of fixing a domain of values (non empty) D and of an association of values for every constant, function and predicate in the formula F as follows:
- (1) Every constant has an associated value in D.
- (2) Every function f, of arity n, is defined by the correspondence $\mathrm{D}^{\mathrm{n}} \rightarrow \mathrm{D}$ where

$$
D^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in D, \ldots, x_{n} \in D\right\}
$$

- (3) Every predicate of arity n, is defined by the correspondence $\mathrm{P}: \mathrm{D}^{\mathrm{n}} \rightarrow\{\mathrm{t}, \mathbf{f}\}$

Interpretation - example

$$
(\forall \mathrm{x})(((\mathrm{A}(\mathrm{a}, \mathrm{x}) \vee \mathrm{B}(\mathrm{f}(\mathrm{x}))) \wedge \mathrm{C}(\mathrm{x})) \rightarrow \mathrm{D}(\mathrm{x}))
$$

$$
\mathrm{D}=\{1,2\}
$$

a								
2								
$\mathrm{f}(1)$	$\mathrm{f}(2)$							
2	1	\quad	$\mathrm{A}(2,1)$	$\mathrm{A}(2,2)$	$\mathrm{B}(1)$	$\mathrm{B}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$
:---:	:---:	:---:	:---:	:---:	:---:			
\mathbf{a}	$\mathbf{D}(1)$	$\mathrm{D}(2)$						

$$
\begin{array}{ll}
X=1 & ((\mathbf{a} \vee \mathbf{f}) \wedge \mathbf{a}) \rightarrow \mathbf{f} \\
X=2 & ((\mathbf{f} \vee \mathbf{a}) \wedge \mathbf{f}) \rightarrow \mathbf{a}
\end{array}
$$

4.3 Properties of wffs in PL

- Valid / tautulogy
- Satisfiable
- Contradiction
- Equivalent formulas
- A formula F is a logical consequence of a formula P
- A formula F is a logical consequence of a set of formulas $P_{1}, \ldots P_{n}$
- Notation of logical consequence $P_{1}, \ldots P_{n} \Rightarrow F$.
- Theorem. Formula F is a logical consequence of a set of formulas $\mathrm{P}_{1}, \ldots \mathrm{P}_{\mathrm{n}}$ if the formula $\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{F}$ is valid.
- Teorema. Formula F is a logical consequence of a set of formulas $\mathrm{P}_{1}, \ldots \mathrm{P}_{\mathrm{n}}$ if the formula $\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}} \wedge \sim \mathrm{F}$ is a contradiction.

Equivalence of quantifiers

$(Q x) F[x] \vee G \equiv(Q x)(F[x] \vee G)$	$(Q x) F[x] \wedge G \equiv(Q x)(F[x] \wedge G)$
$\sim((\forall x) F[x]) \equiv(\exists x)(\sim F[x])$	$\sim((\exists x) F[x]) \equiv(\forall x)(\sim F[x])$
$(\forall x) F[x] \wedge(\forall x) H[x] \equiv(\forall x)(F[x] \wedge H[x])$	$(\exists x) F[x] \vee(\exists x) H[x] \equiv(\exists x)(F[x] \vee H[x])$
$\left(Q_{1} x\right) F[x] \wedge\left(Q_{2} x\right) H[x] \equiv\left(Q_{1} x\right)\left(Q_{2} z\right)(F[x] \wedge H[z])$	$\left(Q_{1} x\right) F[x] \vee\left(Q_{2} x\right) H[x] \equiv\left(Q_{1} x\right)\left(Q_{2} z\right)(F[x] \vee H[z])$

Examples

- All apples are red
- All objects are red apples
- There is a red apple
- All packages in room 27 are smaller than any package in room 28
- All purple mushrooms are poisonous
- $\forall x(\operatorname{Purple}(x) \wedge \operatorname{Mushroom}(x)) \Rightarrow \operatorname{Poisonous(x)}$
- $\forall x$ Purple $(x) \Rightarrow$ (Mushroom $(x) \Rightarrow$ Poisonous $(x))$
- $\forall \mathrm{x}$ Mushroom (x$) \Rightarrow($ Purple $(\mathrm{x}) \Rightarrow \operatorname{Poisonous(x))}$
$(\forall x)(\exists y)$ loves (x, y)
$(\exists \mathrm{y})(\forall \mathrm{x}) \operatorname{loves}(\mathrm{x}, \mathrm{y})$

4.4. Inference rules in PL

- Modus Ponens
- Substitution
- Chaining
- Transpozition
- AND elimination (AE)
- \quad AND introduction (AI)
- Universal instantiation (UI)
- Existential instantiation (EI)
- Rezolution

Example

- Horses are faster than dogs and there is a greyhound that is faster than every rabbit. We know that Harry is a horse and that Ralph is a rabbit. Derive that Harry is faster than Ralph.
- Horse(x)
- Dog(y)

Greyhound(y)
Rabbit(z)

- Faster(y,z))
$\forall \mathbf{x} \forall \mathbf{y} \operatorname{Horse}(\mathbf{x}) \wedge \operatorname{Dog}(\mathbf{y}) \Rightarrow \operatorname{Faster}(\mathbf{x}, \mathbf{y})$
$\exists y \operatorname{Greyhound}(\mathbf{y}) \wedge(\forall \mathrm{z} \operatorname{Rabbit}(\mathrm{z}) \Rightarrow \operatorname{Faster}(\mathbf{y}, \mathrm{z}))$
Horse(Harry)
Rabbit(Ralph)
$\forall \mathbf{y}$ Greyhound $(\mathbf{y}) \Rightarrow \operatorname{Dog}(\mathbf{y})$
$\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z} \operatorname{Faster}(\mathbf{x}, \mathbf{y}) \wedge \operatorname{Faster}(\mathbf{y}, \mathbf{z}) \Rightarrow \operatorname{Faster}(\mathbf{x}, \mathrm{z})$

Proof example

- Theorem: Faster(Harry, Ralph) ?
- Proof using inference rules

1. $\quad \forall \mathrm{x} \forall \mathrm{y} \operatorname{Horse}(\mathrm{x}) \wedge \operatorname{Dog}(\mathrm{y}) \Rightarrow \operatorname{Faster}(\mathrm{x}, \mathrm{y})$
2. $\quad \exists y \operatorname{Greyhound}(\mathrm{y}) \wedge(\forall \mathrm{z}$ Rabbit $(\mathrm{z}) \Rightarrow \operatorname{Faster}(\mathrm{y}, \mathrm{z}))$
3. $\quad \forall \mathrm{y}$ Greyhound $(\mathrm{y}) \Rightarrow \operatorname{Dog}(\mathrm{y})$
4. $\forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}$ Faster $(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Faster}(\mathrm{y}, \mathrm{z}) \Rightarrow \operatorname{Faster}(\mathrm{x}, \mathrm{z})$
5. Horse(Harry)
6. Rabbit(Ralph)
7. \quad Greyhound(Greg) $\wedge(\forall \mathrm{z}$ Rabbit(z) $\Rightarrow \operatorname{Faster}($ Greg, z$))$

2, EI
Greyhound(Greg)
7, AE
9. $\quad \forall \mathrm{z}$ Rabbit(z$) \Rightarrow \operatorname{Faster}($ Greg, z$))$

7, AE

Proof example - cont

10. Rabbit(Ralph) \Rightarrow Faster(Greg,Ralph)

9, UI
11. Faster(Greg,Ralph) 6,10, MP
12. \quad Greyhound $($ Greg $) \Rightarrow \operatorname{Dog}($ Greg $)$ 3, UI
13. Dog (Greg)

12, 8, MP
14. Horse(Harry) $\wedge \operatorname{Dog}($ Greg $) \Rightarrow$ Faster(Harry, Greg)

1, UI
15. Horse(Harry) $\wedge \operatorname{Dog}($ Greg $)$

5, 13, AI
Faster(Harry, Greg) 14, 15, MP
17. Faster (Harry, Greg) \wedge Faster (Greg, Ralph $) \Rightarrow$ Faster(Harry,Ralph)

4, UI
18. Faster(Harry, Greg) \wedge Faster(Greg, Ralph)

16, 11, AI
Faster(Harry,Ralph)
17, 19, MP

