Artificial Intelligence

Knowledge representation in AISymbolic Logic

- Simbolic logic representation
- Formal system
- Propositional logic
- Predicate logic
- Theorem proving

1. Knowledge representation

- Why Symbolic logic
- Power of representation
- Formal language: syntax, semantics
- Conceptualization + representation in a language
- Inference rules

2. Formal systems

- O formal system is a quadruple $S = \langle A, F, A, \Re \rangle$
- A *rule of inference* $R \in \Re$ of arity *n* is an association: $R \subseteq F^n \times F, \ \overline{y} = \langle y_1, ..., y_n \rangle \xrightarrow{R} x, \ x, y_i \in F, \ \forall i = 1, n$
- Immediate consequence
- Be the set of premises $\Gamma = \{y_1, \dots, y_n\}$ $E_0 = \Gamma \cup A$

$$E_1 = E_0 \bigcup_{n \ge 1} \{ x | \exists \overline{y} \in E_0^n, \ \overline{y} \ \Re \ x \} \qquad E_2 = E_1 \bigcup_{n \ge 1} \{ x | \exists \overline{y} \in E_1^n, \ \overline{y} \ \Re \ x \}$$

• An element E_i $(i \ge 0)$ is an immediate <u>consequence</u> of a set of premises Γ

Formal systems - cont

- If $E_0 = A$ ($\Gamma = \phi$) then the elements of E_i are called theorems
- Be $x \in E_i$ a theorem; it can be obtained by successive applications of i.r on the formulas in E_i
- Sequence of rules <u>demonstration</u> . $\vdash_{S} x \vdash_{\mathcal{R}} x$
- If $E_0 = \Gamma \cup A$ then $x \in E_i$ can be <u>deduced</u> from Γ $\Gamma \models_S x$

3. Propositional logic

- Formal language
- 3.1 Syntax
- Alphabet
- A <u>well-formed formula</u> (wff) in propositional logic is:
- (1) An atom is a wff
- (2) If P is a wff, then \sim P is a wff.
- (3) If P and Q are wffs then $P \land Q$, $P \lor Q$, $P \rightarrow Q$ si $P \leftrightarrow Q$ are wffs.
- (4) The set of all wffs can be generated by repeatedly applying rules (1)..(3).

3.2 Semantics

- Interpretation
- Evaluation function of a formula
- Properties of wffs
 - Valid / tautulogy
 - Satisfiable
 - Contradiction
 - Equivalent formulas

Semantics - cont

- A formula F is a logical consequence of a formula P
- A formula F is a logical consequence of a set of formulas P₁,...P_n
- Notation of logical consequence $P_1, \dots, P_n \Rightarrow F$.
- **Theorem**. Formula F is a logical consequence of a set of formulas $P_1, \ldots P_n$ if the formula $P_1, \ldots P_n \rightarrow F$ is valid.
- Teorema. Formula F is a logical consequence of a set of formulas P₁,...P_n if the formula P₁∧...∧ P_n ∧ ~F is a contradiction.

Equivalence rules

Idempotenta	$\mathbf{P} \lor \mathbf{P} \equiv \mathbf{P}$	$\mathbf{P} \wedge \mathbf{P} \equiv \mathbf{P}$	
Asociativitate	$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$	$(P \land Q) \land R \equiv P \land (Q \land R)$	
Comutativitate	$\mathbf{P} \lor \mathbf{Q} \equiv \mathbf{Q} \lor \mathbf{P}$	$P \land Q \equiv Q \land P$	$P \leftrightarrow Q \equiv Q \leftrightarrow P$
Distributivitate	$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	
De Morgan	$\sim (\mathbf{P} \lor \mathbf{Q}) \equiv \sim \mathbf{P} \land \sim \mathbf{Q}$	$\sim (\mathbf{P} \land \mathbf{Q}) \equiv \sim \mathbf{P} \lor \sim \mathbf{Q}$	
Eliminarea implicatiei	$\mathbf{P} \to \mathbf{Q} \equiv \sim \mathbf{P} \lor \mathbf{Q}$		
Eliminarea implicatiei duble	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$		

3.3 Obtaining new knowledge

- Conceptualization
- Reprezentation in a formal language
- Model theory
 - $KB \parallel _ x M$
- Proof theory
 - $KB \models_s x M$
- Monotonic logics
- Non-monotonic logics

3.4 Inference rules

Modus Ponens	$\frac{P}{Q} \rightarrow Q}{Q}$
SubstitutionChain rule	$\begin{array}{c} P \rightarrow Q \\ Q \rightarrow R \end{array}$
AND introduction	$\overline{P \rightarrow R}$ $\frac{P}{Q}$ $\overline{P \land Q}$
Transposition	$\frac{P \to Q}{\sim Q \to \sim P}$

Example

- Mihai has money
- The car is white
- The car is nice
- If the car is white or the car is nice and Mihai has money then Mihai goes to the mountain
- *B*
- *F*

 $\bullet (A \lor F) \land B \to C$

4. First order predicate logic

4.1 Syntax

Be D a domain of values. A term is defined as:

- (1) A constant is a term with a fixed value belonging to *D*.
- (2) A variable is a term which may take values in *D*.
- (3) If f is a function of n arguments and $t_1, ..., t_n$ are terms then $f(t_1, ..., t_n)$ is a term.
- (4) All terms are generated by the application of rules (1)...(3).

Syntax PL - cont

- Predicates of arity n
- Atom or atomic formula.
- Literal
- A *well formed formula (wff)* in first order predicate logic is defined as:
- (1) A atom is an wff
- (2) If P[x] is a wff then $\sim P[x]$ is an wff.
- (3) If P[x] and Q [x] are wffs then P[x] \land Q[x], P[x] \lor Q[x], P \rightarrow Q and P \leftrightarrow Q are wffs.
- (4) If P[x] is an wff then $\forall x P[x], \exists x P[x]$ are wffs.
- (5) The set of all wffs can be generated by repeatedly applying rules (1)..(4).

CNF, DNF

Conjunctive normal form (CNF) $F_1 \wedge \ldots \wedge F_n$, F_i , i=1,n $(L_{i1} \vee \ldots \vee L_{im}).$ Disjunctive normal form (DNF) $F_1 \vee \ldots \vee F_n$, F_i , i=1,n $(L_{i1} \wedge \ldots \wedge L_{im})$

4.2 Semantics of PL

- The interpretation of a formula F in first order predicate logic consists of fixing a domain of values (non empty) D and of an association of values for every constant, function and predicate in the formula F as follows:
- (1) Every constant has an associated value in D.
- (2) Every function f, of arity n, is defined by the correspondence Dⁿ → D where

$$D^{n} = \{(x_{1},...,x_{n}) | x_{1} \in D,...,x_{n} \in D\}$$

(3) Every predicate of arity n, is defined by the correspondence P:Dⁿ→{t,f}

Interpretation - example

$$(\forall x)(((A(a,x) \lor B(f(x))) \land C(x)) \rightarrow D(x))$$

D={1,2}

a	f(1)	f(2)	A(2,1)	A(2,2)	B(1)	B(2)	C(1)	C(2)	D(1)	D(2)
2	2	1	а	f	a	f	a	f	f	a

$$\mathbf{X}=1 \quad ((\mathbf{a} \lor \mathbf{f}) \land \mathbf{a}) \to \mathbf{f}$$

$$X=2 \quad ((\mathbf{f} \lor \mathbf{a}) \land \mathbf{f}) \to \mathbf{a}$$

4.3 Properties of wffs in PL

- Valid / tautulogy
- Satisfiable
- Contradiction
- Equivalent formulas
- A formula F is a logical consequence of a formula P
- A formula F is a logical consequence of a set of formulas $P_1, \dots P_n$
- Notation of logical consequence $P_1, \dots P_n \Rightarrow F$.
- **Theorem**. Formula F is a logical consequence of a set of formulas P_1, \ldots, P_n if the formula $P_1 \land \ldots \land P_n \rightarrow F$ is valid.
- **Teorema**. Formula F is a logical consequence of a set of formulas $P_1, \ldots P_n$ if the formula $P_1 \land \ldots \land P_n \land \neg F$ is a contradiction.

Equivalence of quantifiers

$(Qx)F[x] \lor G \equiv (Qx)(F[x] \lor G)$	$(Qx)F[x] \land G \equiv (Qx)(F[x] \land G)$
$\sim ((\forall x)F[x]) \equiv (\exists x)(\sim F[x])$	$\sim ((\exists x)F[x]) \equiv (\forall x)(\sim F[x])$
$(\forall x)F[x] \land (\forall x)H[x] \equiv (\forall x)(F[x] \land H[x])$	$(\exists x)F[x] \lor (\exists x)H[x] \equiv (\exists x)(F[x] \lor H[x])$
$(Q_1 x)F[x] \wedge (Q_2 x)H[x] \equiv (Q_1 x)(Q_2 z)(F[x] \wedge H[z])$	$(Q_1x)F[x] \lor (Q_2x)H[x] \equiv (Q_1x)(Q_2z)(F[x] \lor H[z])$

Examples

- All apples are red
- All objects are red apples
- There is a red apple
- All packages in room 27 are smaller than any package in room 28
 - All purple mushrooms are poisonous
 - $\forall x (Purple(x) \land Mushroom(x)) \Rightarrow Poisonous(x)$
 - $\forall x \operatorname{Purple}(x) \Rightarrow (\operatorname{Mushroom}(x) \Rightarrow \operatorname{Poisonous}(x))$
 - $\forall x \text{ Mushroom } (x) \Rightarrow (\text{Purple } (x) \Rightarrow \text{Poisonous}(x))$

 $(\forall x)(\exists y) \text{ loves}(x,y)$ $(\exists y)(\forall x) \text{ loves}(x,y)$

4.4. Inference rules in PL

- Modus Ponens
- Substitution
- Chaining
- Transpozition
- AND elimination (AE)
- AND introduction (AI)
- Universal instantiation (UI)
- Existential instantiation (EI)
- Rezolution

Example

- Horses are faster than dogs and there is a greyhound that is faster than every rabbit. We know that Harry is a horse and that Ralph is a rabbit. Derive that Harry is faster than Ralph.
- Horse(x)Greyhound(y)
- Dog(y) Rabbit(z)
- Faster(y,z))

 $\forall x \forall y \operatorname{Horse}(x) \wedge \operatorname{Dog}(y) \Rightarrow \operatorname{Faster}(x,y)$ $\exists y \operatorname{Greyhound}(y) \wedge (\forall z \operatorname{Rabbit}(z) \Rightarrow \operatorname{Faster}(y,z))$ Horse(Harry) Rabbit(Ralph) $\forall y \operatorname{Greyhound}(y) \Rightarrow \operatorname{Dog}(y)$ $\forall x \forall y \forall z \operatorname{Faster}(x,y) \wedge \operatorname{Faster}(y,z) \Rightarrow \operatorname{Faster}(x,z)$

Proof example

- **Theorem**: Faster(Harry, Ralph) ?
- Proof using inference rules
- 1. $\forall x \forall y \operatorname{Horse}(x) \land \operatorname{Dog}(y) \Rightarrow \operatorname{Faster}(x,y)$
- 2. $\exists y \text{ Greyhound}(y) \land (\forall z \text{ Rabbit}(z) \Rightarrow \text{Faster}(y,z))$
- 3. $\forall y \text{ Greyhound}(y) \Rightarrow \text{Dog}(y)$
- 4. $\forall x \forall y \forall z \text{ Faster}(x,y) \land \text{Faster}(y,z) \Rightarrow \text{Faster}(x,z)$
- 5. Horse(Harry)
- 6. Rabbit(Ralph)
- 7. Greyhound(Greg) \land (\forall z Rabbit(z) \Rightarrow Faster(Greg,z)) 2, EI
- 8. Greyhound(Greg) 7, AE
- 9. $\forall z \operatorname{Rabbit}(z) \Rightarrow \operatorname{Faster}(\operatorname{Greg}, z))$ 7, AE

Proof example - cont

10.	Rabbit(Ralph) \Rightarrow Faster(Greg,Ralph)	9, UI
11.	Faster(Greg,Ralph)	6,10, MP
12.	$Greyhound(Greg) \Rightarrow Dog(Greg)$	3, UI
13.	Dog(Greg)	12, 8, MP
14.	Horse(Harry) \land Dog(Greg) \Rightarrow Faster(Harry, Greg)	1, UI
15.	Horse(Harry) ∧ Dog(Greg)	5, 13, AI
16.	Faster(Harry, Greg)	14, 15, MP
17.	Faster(Harry, Greg) \land Faster(Greg, Ralph) \Rightarrow Faster(Harry, Harry, Harry, Greg) \land Faster(Harry, Harry,	arry,Ralph)
		4, UI
18.	Faster(Harry, Greg) ^ Faster(Greg, Ralph)	16, 11, AI
19.	Faster(Harry,Ralph)	17, 19, MP